Comparison of the accommodation theories of Coleman and of Helmholtz by finite element simulations
نویسندگان
چکیده
PURPOSE The accommodation process of the human eye is still a controversial subject. Coleman assumes that the lens, together with the zonula fibers, forms a diaphragm which is held in a catenary shape due to the pressure difference between the aqueous and vitreous body of the lens. The aim of the paper is to compare the results of two simulations (according to the Helmholtz and to the Coleman theories) with ultrasonographic data. METHODS An axisymmetric static finite element model of the lens was generated using the literature data for geometry, material properties and loads. The refractive power of the lens was calculated for two different ages (29 and 45 years). RESULTS The application of a pressure to the posterior lens surface did not yield an increase in refractive power change during accommodation. Rather a decrease in accommodation related refractive power was found. CONCLUSIONS Physiologically relevant refractive power changes are obtained by a simulation in accordance with the Helmholtz theory. A simulation in accordance with the Coleman theory does not yield physiological values of refractive power change.
منابع مشابه
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملمقایسه نتایج حل ترموالاستیک نیمفضا میان
In this paper, transfinite element method is used to analyze the two dimensional thermoelasticity problems. A comparison is made between the thermoelastic analysis results of the classical theory and theories with one or two relaxation times (i.e. L-S and G-L theories), for the half space problem. Governing equations are transformed to Laplace domain and then, node variables are calculated by t...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملFINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS
In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 45 شماره
صفحات -
تاریخ انتشار 2005